Doubly commuting mixed invariant subspaces in the polydisc

نویسندگان

چکیده

We obtain a complete characterization for doubly commuting mixed invariant subspaces of the Hardy space over unit polydisc. say closed subspace Q H2(Dn) is if Mzj(Q)⊆Q 1≤j≤k and Mzj⁎(Q)⊆Q, k+1≤j≤n some integer k∈{1,2,…,n−1}. prove that only ifQ=ΘH2(Dk)⊗Qθ1⊗⋯⊗Qθn−k, where Θ∈H∞(Dk) inner function Qθj either Jordan block H2(D)⊖θjH2(D) θj or H2(D). Furthermore, an explicit representation commutant n-tuple shifts as well tuple co-shifts are obtained. Finally, we discuss concrete examples subspaces.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant subspaces in Simpira

In this short note we report on invariant subspaces in Simpira in the case of four registers. In particular, we show that the whole input space (respectively output space) can be partitioned into invariant cosets of dimension 56 over F 28 . These invariant subspaces are found by exploiting the non-invariant subspace properties of AES together with the particular choice of Feistel configuration....

متن کامل

Invariant Subspaces, Quasi-invariant Subspaces, and Hankel Operators

In this paper, using the theory of Hilbert modules we study invariant subspaces of the Bergman spaces on bounded symmetric domains and quasi-invariant sub-spaces of the Segal–Bargmann spaces. We completely characterize small Hankel operators with finite rank on these spaces.

متن کامل

Invariant Subspaces of the Monodromy

We show that there are obstructions to the existence of certain types of invariant subspaces of the Milnor monodromy; this places restrictions on the cohomology of Milnor fibres of non-isolated hypersurface singularities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin Des Sciences Mathematiques

سال: 2021

ISSN: ['0007-4497', '1952-4773']

DOI: https://doi.org/10.1016/j.bulsci.2021.103051